A pioneering secure transmission scheme is proposed, which harnesses movable antennas (MAs) to optimize antenna positions for augmenting the physical layer security. Particularly, an MA-enabled secure wireless system is considered, where a multi-antenna transmitter communicates with a single-antenna receiver in the presence of an eavesdropper. The beamformer and antenna positions at the transmitter are jointly optimized under two criteria: power consumption minimization and secrecy rate maximization. For each scenario, a novel suboptimal algorithm was proposed to tackle the resulting nonconvex optimization problem, capitalizing on the approaches of alternating optimization and gradient descent. Numerical results demonstrate that the proposed MA systems significantly improve physical layer security compared to various benchmark schemes relying on conventional fixed-position antennas (FPAs).