In the past 20 years, artificial neural networks have become dominant in various areas, continually growing in scale. However, the current analysis of large models has mainly focused on functionality, overlooking the influence of scale differences on their properties. To address this, we propose the concept of Emergence Learning, which emphasizes the significance of scale. By studying models of different scales, we have identified a key factor in achieving higher performance in large models: the decrease of monosemantic neurons. Building on this insight, we propose a proactive approach to inhibit monosemanticity for improved performance. Our solution involves a two-phase process that includes monosemantic neuron detection and inhibition, supported by theoretical analysis. Experimental results on various tasks and neural networks demonstrate the effectiveness of our proposed method. Following the idea of Emergence Learning, though drawing inspiration from scaling phenomena, the applicability of our method is not restricted to large scale alone. Therefore, the experiment is self-contained. However, extending this research to very large-scale datasets is appealing yet impossible for research departments due to limited resources. We are delighted to share the first co-authorship and eagerly await collaboration from any AI company before submission.