Large-scale Pretrained Language Models~(LLMs), such as ChatGPT and GPT4, have shown strong abilities in multilingual translations, without being explicitly trained on parallel corpora. It is interesting how the LLMs obtain their ability to carry out translation instructions for different languages. In this paper, we present a detailed analysis by finetuning a multilingual pretrained language model, XGLM-7B, to perform multilingual translation following given instructions. Firstly, we show that the multilingual LLMs have stronger translation abilities than previously demonstrated. For a certain language pair, the performance depends on both the language families and the amount of data used in the pretraining phase. Secondly, we find that LLMs' ability to carry out translation instructions relies on the understanding of translation instruction and the alignment among different languages. With proper enhancement, LLMs could perform the translation task well even for those language pairs unseen during the instruction tuning phase.