Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!
Abstract:Expressive robotic behavior is essential for the widespread acceptance of robots in social environments. Recent advancements in learned legged locomotion controllers have enabled more dynamic and versatile robot behaviors. However, determining the optimal behavior for interactions with different users across varied scenarios remains a challenge. Current methods either rely on natural language input, which is efficient but low-resolution, or learn from human preferences, which, although high-resolution, is sample inefficient. This paper introduces a novel approach that leverages priors generated by pre-trained LLMs alongside the precision of preference learning. Our method, termed Language-Guided Preference Learning (LGPL), uses LLMs to generate initial behavior samples, which are then refined through preference-based feedback to learn behaviors that closely align with human expectations. Our core insight is that LLMs can guide the sampling process for preference learning, leading to a substantial improvement in sample efficiency. We demonstrate that LGPL can quickly learn accurate and expressive behaviors with as few as four queries, outperforming both purely language-parameterized models and traditional preference learning approaches. Website with videos: https://lgpl-gaits.github.io/