In this work, we consider the offline preference-based reinforcement learning problem. We focus on the two-phase learning approach that is prevalent in previous reinforcement learning from human preference works. We find a challenge in applying two-phase learning in the offline PBRL setting that the learned utility model can be too hard for the learning agent to optimize during the second learning phase. To overcome the challenge, we propose a two-phasing learning approach under behavior regularization through action clipping. The insight is that the state-actions which are poorly covered by the dataset can only provide limited information and increase the complexity of the problem in the second learning phase. Our method ignores such state-actions during the second learning phase to achieve higher learning efficiency. We empirically verify that our method has high learning efficiency on a variety of datasets in robotic control environments.