To unbiasedly evaluate multiple target policies, the dominant approach among RL practitioners is to run and evaluate each target policy separately. However, this evaluation method is far from efficient because samples are not shared across policies, and running target policies to evaluate themselves is actually not optimal. In this paper, we address these two weaknesses by designing a tailored behavior policy to reduce the variance of estimators across all target policies. Theoretically, we prove that executing this behavior policy with manyfold fewer samples outperforms on-policy evaluation on every target policy under characterized conditions. Empirically, we show our estimator has a substantially lower variance compared with previous best methods and achieves state-of-the-art performance in a broad range of environments.