https://github.com/zhaominyiz/PACU.
Recent studies have shown that Vision Language Large Models (VLLMs) may output content not relevant to the input images. This problem, called the hallucination phenomenon, undoubtedly degrades VLLM performance. Therefore, various anti-hallucination techniques have been proposed to make model output more reasonable and accurate. Despite their successes, from extensive tests we found that augmenting the prompt (e.g. word appending, rewriting, and spell error etc.) may change model output and make the output hallucinate again. To cure this drawback, we propose a new instruct-tuning framework called Prompt Augmentation and Caption Utilization (PACU) to boost VLLM's generation ability under the augmented prompt scenario. Concretely, on the one hand, PACU exploits existing LLMs to augment and evaluate diverse prompts automatically. The resulting high-quality prompts are utilized to enhance VLLM's ability to process different prompts. On the other hand, PACU exploits image captions to jointly work with image features as well as the prompts for response generation. When the visual feature is inaccurate, LLM can capture useful information from the image captions for response generation. Extensive experiments on hallucination evaluation and prompt-augmented datasets demonstrate that our PACU method can work well with existing schemes to effectively boost VLLM model performance. Code is available in