https://www.youtube.com/watch?v=gfDaRqobheg
Loco-manipulation calls for effective whole-body control and contact-rich interactions with the object and the environment. Existing learning-based control frameworks rely on task-specific engineered rewards, training a set of low-level skill policies and explicitly switching between them with a high-level policy or FSM, leading to quasi-static and fragile transitions between skills. In contrast, for solving highly dynamic tasks such as soccer, the robot should run towards the ball, decelerating into an optimal approach configuration to seamlessly switch to dribbling and eventually score a goal - a continuum of smooth motion. To this end, we propose to learn a single Oracle Guided Multi-mode Policy (OGMP) for mastering all the required modes and transition maneuvers to solve uni-object bipedal loco-manipulation tasks. Specifically, we design a multi-mode oracle as a closed loop state-reference generator, viewing it as a hybrid automaton with continuous reference generating dynamics and discrete mode jumps. Given such an oracle, we then train an OGMP through bounded exploration around the generated reference. Furthermore, to enforce the policy to learn the desired sequence of mode transitions, we present a novel task-agnostic mode-switching preference reward that enhances performance. The proposed approach results in successful dynamic loco-manipulation in omnidirectional soccer and box-moving tasks with a 16-DoF bipedal robot HECTOR. Supplementary video results are available at