Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!
Abstract:We introduce the Dutch Model Benchmark: DUMB. The benchmark includes a diverse set of datasets for low-, medium- and high-resource tasks. The total set of eight tasks include three tasks that were previously not available in Dutch. Instead of relying on a mean score across tasks, we propose Relative Error Reduction (RER), which compares the DUMB performance of models to a strong baseline which can be referred to in the future even when assessing different sets of models. Through a comparison of 14 pre-trained models (mono- and multi-lingual, of varying sizes), we assess the internal consistency of the benchmark tasks, as well as the factors that likely enable high performance. Our results indicate that current Dutch monolingual models under-perform and suggest training larger Dutch models with other architectures and pre-training objectives. At present, the highest performance is achieved by DeBERTaV3 (large), XLM-R (large) and mDeBERTaV3 (base). In addition to highlighting best strategies for training larger Dutch models, DUMB will foster further research on Dutch. A public leaderboard is available at https://dumbench.nl.