A dual-robust design of beamforming is investigated in an integrated sensing and communication (ISAC) system.Existing research on robust ISAC waveform design, while proposing solutions to imperfect channel state information (CSI), generally depends on prior knowledge of the target's approximate location to design waveforms. This approach, however, limits the precision in sensing the target's exact location. In this paper, considering both CSI imperfection and target location uncertainty, a novel framework of joint robust optimization is proposed by maximizing the weighted sum of worst-case data rate and beampattern gain. To address this challenging problem, we propose an efficient two-layer iteration algorithm based on S-Procedure and convex hull. Finally, numerical results verify the effectiveness and performance improvement of our dual-robust algorithm, as well as the trade-off between communication and sensing performance.