Diffusion models have demonstrated remarkable success in dense prediction problems, which aims to model per-pixel relationship between RGB images and dense signal maps, thanks to their ability to effectively capture complex data distributions. However, initiating the reverse sampling trajectory from uninformative noise prior introduces limitations such as degraded performance and slow inference speed. In this work, we propose DPBridge, a generative framework that formulates dense prediction tasks as image-conditioned generation problems and establishes a direct mapping between input image and its corresponding dense map based on fully-tractable diffusion bridge process. This approach addresses aforementioned limitations in conventional diffusion-based solutions. In addition, we introduce finetuning strategies to adapt our model from pretrained image diffusion backbone, leveraging its rich visual prior knowledge to facilitate both efficient training and robust generalization ability. Experimental results shows that our DPBridge can achieve competitive performance compared to both feed-forward and diffusion-based approaches across various benchmarks, highlighting its effectiveness and adaptability.