In this paper, we focus on facilitating differentially private quantized communication between the clients and server in federated learning (FL). Towards this end, we propose to have the clients send a \textit{private quantized} version of only the \textit{unit vector} along the change in their local parameters to the server, \textit{completely throwing away the magnitude information}. We call this algorithm \texttt{DP-NormFedAvg} and show that it has the same order-wise convergence rate as \texttt{FedAvg} on smooth quasar-convex functions (an important class of non-convex functions for modeling optimization of deep neural networks), thereby establishing that discarding the magnitude information is not detrimental from an optimization point of view. We also introduce QTDL, a new differentially private quantization mechanism for unit-norm vectors, which we use in \texttt{DP-NormFedAvg}. QTDL employs \textit{discrete} noise having a Laplacian-like distribution on a \textit{finite support} to provide privacy. We show that under a growth-condition assumption on the per-sample client losses, the extra per-coordinate communication cost in each round incurred due to privacy by our method is $\mathcal{O}(1)$ with respect to the model dimension, which is an improvement over prior work. Finally, we show the efficacy of our proposed method with experiments on fully-connected neural networks trained on CIFAR-10 and Fashion-MNIST.