Image quality assessment (IQA) plays a critical role in selecting high-quality images and guiding compression and enhancement methods in a series of applications. The blind IQA, which assesses the quality of in-the-wild images containing complex authentic distortions without reference images, poses greater challenges. Existing methods are limited to modeling a uniform distribution with local patches and are bothered by the gap between low and high-level visions (caused by widely adopted pre-trained classification networks). In this paper, we propose a novel IQA method called diffusion priors-based IQA (DP-IQA), which leverages the prior knowledge from the pre-trained diffusion model with its excellent powers to bridge semantic gaps in the perception of the visual quality of images. Specifically, we use pre-trained stable diffusion as the backbone, extract multi-level features from the denoising U-Net during the upsampling process at a specified timestep, and decode them to estimate the image quality score. The text and image adapters are adopted to mitigate the domain gap for downstream tasks and correct the information loss caused by the variational autoencoder bottleneck. Finally, we distill the knowledge in the above model into a CNN-based student model, significantly reducing the parameter to enhance applicability, with the student model performing similarly or even better than the teacher model surprisingly. Experimental results demonstrate that our DP-IQA achieves state-of-the-art results on various in-the-wild datasets with better generalization capability, which shows the superiority of our method in global modeling and utilizing the hierarchical feature clues of diffusion for evaluating image quality.