The performance of still-to-video FR systems can decline significantly because faces captured in unconstrained operational domain (OD) over multiple video cameras have a different underlying data distribution compared to faces captured under controlled conditions in the enrollment domain (ED) with a still camera. This is particularly true when individuals are enrolled to the system using a single reference still. To improve the robustness of these systems, it is possible to augment the reference set by generating synthetic faces based on the original still. However, without knowledge of the OD, many synthetic images must be generated to account for all possible capture conditions. FR systems may, therefore, require complex implementations and yield lower accuracy when training on many less relevant images. This paper introduces an algorithm for domain-specific face synthesis (DSFS) that exploits the representative intra-class variation information available from the OD. Prior to operation, a compact set of faces from unknown persons appearing in the OD is selected through clustering in the captured condition space. The domain-specific variations of these face images are projected onto the reference stills by integrating an image-based face relighting technique inside the 3D reconstruction framework. A compact set of synthetic faces is generated that resemble individuals of interest under the capture conditions relevant to the OD. In a particular implementation based on sparse representation classification, the synthetic faces generated with the DSFS are employed to form a cross-domain dictionary that account for structured sparsity. Experimental results reveal that augmenting the reference gallery set of FR systems using the proposed DSFS approach can provide a higher level of accuracy compared to state-of-the-art approaches, with only a moderate increase in its computational complexity.