While significant progress has been achieved in LiDAR-based perception, domain generalization continues to present challenges, often resulting in reduced performance when encountering unfamiliar datasets due to domain discrepancies. One of the primary hurdles stems from the variability of LiDAR sensors, leading to inconsistencies in point cloud density distribution. Such inconsistencies can undermine the effectiveness of perception models. We address this challenge by introducing a new approach that acknowledges a fundamental characteristic of LiDAR: the variation in point density due to the distance from the LiDAR to the scene, and the number of beams relative to the field of view. Understanding this, we view each LiDAR's point cloud at various distances as having distinct density distributions, which can be consistent across different LiDAR models. With this insight, we propose the Density Discriminative Feature Embedding (DDFE) module, crafted to specifically extract features related to density while ensuring domain invariance across different LiDAR sensors. In addition, we introduce a straightforward but effective density augmentation technique, designed to broaden the density spectrum and enhance the capabilities of the DDFE. The proposed DDFE stands out as a versatile and lightweight domain generalization module. It can be seamlessly integrated into various 3D backbone networks, consistently outperforming existing state-of-the-art domain generalization approaches. We commit to releasing the source code publicly to foster community collaboration and advancement.