We tackle the domain generalisation (DG) problem by posing it as a domain adaptation (DA) task where we adversarially synthesise the worst-case target domain and adapt a model to that worst-case domain, thereby improving the model's robustness. To synthesise data that is challenging yet semantics-preserving, we generate Fourier amplitude images and combine them with source domain phase images, exploiting the widely believed conjecture from signal processing that amplitude spectra mainly determines image style, while phase data mainly captures image semantics. To synthesise a worst-case domain for adaptation, we train the classifier and the amplitude generator adversarially. Specifically, we exploit the maximum classifier discrepancy (MCD) principle from DA that relates the target domain performance to the discrepancy of classifiers in the model hypothesis space. By Bayesian hypothesis modeling, we express the model hypothesis space effectively as a posterior distribution over classifiers given the source domains, making adversarial MCD minimisation feasible. On the DomainBed benchmark including the large-scale DomainNet dataset, the proposed approach yields significantly improved domain generalisation performance over the state-of-the-art.