Stance detection of social media text is a key component of downstream tasks involving the identification of groups of users with opposing opinions on contested topics such as vaccination and within arguments. In particular, stance provides an indication of an opinion towards an entity. This paper introduces DIVERSE, a dataset of over 173,000 YouTube video comments annotated for their stance towards videos of the U.S. military. The stance is annotated through a human-guided, machine-assisted labeling methodology that makes use of weak signals of tone within the sentence as supporting indicators, as opposed to using manual annotations by humans. These weak signals consist of the presence of hate speech and sarcasm, the presence of specific keywords, the sentiment of the text, and the stance inference from two Large Language Models. The weak signals are then consolidated using a data programming model before each comment is annotated with a final stance label. On average, the videos have 200 comments each, and the stance of the comments skews slightly towards the "against" characterization for both the U.S. Army and the videos posted on the channel.