Voice-based AI development faces unique challenges in processing both linguistic and paralinguistic information. This study compares how large audio-language models (LALMs) and humans integrate speaker characteristics during speech comprehension, asking whether LALMs process speaker-contextualized language in ways that parallel human cognitive mechanisms. We compared two LALMs' (Qwen2-Audio and Ultravox 0.5) processing patterns with human EEG responses. Using surprisal and entropy metrics from the models, we analyzed their sensitivity to speaker-content incongruency across social stereotype violations (e.g., a man claiming to regularly get manicures) and biological knowledge violations (e.g., a man claiming to be pregnant). Results revealed that Qwen2-Audio exhibited increased surprisal for speaker-incongruent content and its surprisal values significantly predicted human N400 responses, while Ultravox 0.5 showed limited sensitivity to speaker characteristics. Importantly, neither model replicated the human-like processing distinction between social violations (eliciting N400 effects) and biological violations (eliciting P600 effects). These findings reveal both the potential and limitations of current LALMs in processing speaker-contextualized language, and suggest differences in social-linguistic processing mechanisms between humans and LALMs.