Infectious diseases occur when pathogens from other individuals or animals infect a person, resulting in harm to both individuals and society as a whole. The outbreak of such diseases can pose a significant threat to human health. However, early detection and tracking of these outbreaks have the potential to reduce the mortality impact. To address these threats, public health authorities have endeavored to establish comprehensive mechanisms for collecting disease data. Many countries have implemented infectious disease surveillance systems, with the detection of epidemics being a primary objective. The clinical healthcare system, local/state health agencies, federal agencies, academic/professional groups, and collaborating governmental entities all play pivotal roles within this system. Moreover, nowadays, search engines and social media platforms can serve as valuable tools for monitoring disease trends. The Internet and social media have become significant platforms where users share information about their preferences and relationships. This real-time information can be harnessed to gauge the influence of ideas and societal opinions, making it highly useful across various domains and research areas, such as marketing campaigns, financial predictions, and public health, among others. This article provides a review of the existing standard methods developed by researchers for detecting outbreaks using time series data. These methods leverage various data sources, including conventional data sources and social media data or Internet data sources. The review particularly concentrates on works published within the timeframe of 2015 to 2022.