Channel capacity plays a crucial role in the development of modern communication systems as it represents the maximum rate at which information can be reliably transmitted over a communication channel. Nevertheless, for the majority of channels, finding a closed-form capacity expression remains an open challenge. This is because it requires to carry out two formidable tasks a) the computation of the mutual information between the channel input and output, and b) its maximization with respect to the signal distribution at the channel input. In this paper, we address both tasks. Inspired by implicit generative models, we propose a novel cooperative framework to automatically learn the channel capacity, for any type of memory-less channel. In particular, we firstly develop a new methodology to estimate the mutual information directly from a discriminator typically deployed to train adversarial networks, referred to as discriminative mutual information estimator (DIME). Secondly, we include the discriminator in a cooperative channel capacity learning framework, referred to as CORTICAL, where a discriminator learns to distinguish between dependent and independent channel input-output samples while a generator learns to produce the optimal channel input distribution for which the discriminator exhibits the best performance. Lastly, we prove that a particular choice of the cooperative value function solves the channel capacity estimation problem. Simulation results demonstrate that the proposed method offers high accuracy.