The need for robust, secure and private machine learning is an important goal for realizing the full potential of the Internet of Things (IoT). Federated learning has proven to help protect against privacy violations and information leakage. However, it introduces new risk vectors which make machine learning models more difficult to defend against adversarial samples. In this study, we examine the role of differential privacy and self-normalization in mitigating the risk of adversarial samples specifically in a federated learning environment. We introduce DiPSeN, a Differentially Private Self-normalizing Neural Network which combines elements of differential privacy noise with self-normalizing techniques. Our empirical results on three publicly available datasets show that DiPSeN successfully improves the adversarial robustness of a deep learning classifier in a federated learning environment based on several evaluation metrics.