Recognizing specific events in medical data requires trained personnel. To aid the classification, machine learning algorithms can be applied. In this context, medical records are usually high-dimensional, although a lower dimension can also reflect the dynamics of the signal. In this study, electroencephalogram data with Interictal Epileptic Discharges (IEDs) are investigated. First, the dimensions are reduced using Dynamical Component Analysis (DyCA) and Principal Component Analysis (PCA), respectively. The reduced data are examined using topological data analysis (TDA), specifically using a persistent homology algorithm. The persistent homology results are used for targeted feature generation. The features are used to train and evaluate a Support Vector Machine (SVM) to distinguish IEDs from background activities.