With the explosive growth of online products and content, recommendation techniques have been considered as an effective tool to overcome information overload, improve user experience, and boost business revenue. In recent years, we have observed a new desideratum of considering long-term rewards of multiple related recommendation tasks simultaneously. The consideration of long-term rewards is strongly tied to business revenue and growth. Learning multiple tasks simultaneously could generally improve the performance of individual task due to knowledge sharing in multi-task learning. While a few existing works have studied long-term rewards in recommendations, they mainly focus on a single recommendation task. In this paper, we propose {\it PoDiRe}: a \underline{po}licy \underline{di}stilled \underline{re}commender that can address long-term rewards of recommendations and simultaneously handle multiple recommendation tasks. This novel recommendation solution is based on a marriage of deep reinforcement learning and knowledge distillation techniques, which is able to establish knowledge sharing among different tasks and reduce the size of a learning model. The resulting model is expected to attain better performance and lower response latency for real-time recommendation services. In collaboration with Samsung Game Launcher, one of the world's largest commercial mobile game platforms, we conduct a comprehensive experimental study on large-scale real data with hundreds of millions of events and show that our solution outperforms many state-of-the-art methods in terms of several standard evaluation metrics.