Out-of-distribution (OOD) detection is essential for the safe deployment of AI. Particularly, OOD detectors should generalize effectively across diverse scenarios. To improve upon the generalizability of existing OOD detectors, we introduce a highly versatile OOD detector, called Neural Collapse inspired OOD detector (NC-OOD). We extend the prevalent observation that in-distribution (ID) features tend to form clusters, whereas OOD features are far away. Particularly, based on the recent observation, Neural Collapse, we further demonstrate that ID features tend to cluster in proximity to weight vectors. From our extended observation, we propose to detect OOD based on feature proximity to weight vectors. To further rule out OOD samples, we leverage the observation that OOD features tend to reside closer to the origin than ID features. Extensive experiments show that our approach enhances the generalizability of existing work and can consistently achieve state-of-the-art OOD detection performance across a wide range of OOD Benchmarks over different classification tasks, training losses, and model architectures.