Time series classification is essential in many fields, such as medicine, finance, environmental science, and manufacturing, enabling tasks like disease diagnosis, anomaly detection, and stock price prediction. Machine learning models like Recurrent Neural Networks and InceptionTime, while successful in numerous applications, can face scalability limitations due to intensive training requirements. To address this, random convolutional kernel models such as Rocket and its derivatives have emerged, simplifying training and achieving state-of-the-art performance by utilizing a large number of randomly generated features from time series data. However, due to their random nature, most of the generated features are redundant or non-informative, adding unnecessary computational load and compromising generalization. Here, we introduce Sequential Feature Detachment (SFD) as a method to identify and prune these non-essential features. SFD uses model coefficients to estimate feature importance and, unlike previous algorithms, can handle large feature sets without the need for complex hyperparameter tuning. Testing on the UCR archive demonstrates that SFD can produce models with $10\%$ of the original features while improving $0.2\%$ the accuracy on the test set. We also present an end-to-end procedure for determining an optimal balance between the number of features and model accuracy, called Detach-ROCKET. When applied to the largest binary UCR dataset, Detach-ROCKET is capable of reduce model size by $98.9\%$ and increases test accuracy by $0.6\%$.