This research introduces a novel methodology for assigning quantifiable, controllable and psychometrically validated personalities to Large Language Models-Based Agents (Agents) using the Big Five personality framework. It seeks to overcome the constraints of human subject studies, proposing Agents as an accessible tool for social science inquiry. Through a series of four studies, this research demonstrates the feasibility of assigning psychometrically valid personality traits to Agents, enabling them to replicate complex human-like behaviors. The first study establishes an understanding of personality constructs and personality tests within the semantic space of an LLM. Two subsequent studies -- using empirical and simulated data -- illustrate the process of creating Agents and validate the results by showing strong correspondence between human and Agent answers to personality tests. The final study further corroborates this correspondence by using Agents to replicate known human correlations between personality traits and decision-making behaviors in scenarios involving risk-taking and ethical dilemmas, thereby validating the effectiveness of the psychometric approach to design Agents and its applicability to social and behavioral research.