Robot-assisted ultrasound scanning promises to advance autonomous and accessible medical imaging. However, ensuring patient safety and compliant human-robot interaction (HRI) during probe contact poses a significant challenge. Most existing systems either have high mechanical stiffness or are compliant but lack sufficient force and precision. This paper presents a novel single-degree-of-freedom end-effector for safe and accurate robotic ultrasound imaging, using a quasi-direct drive actuator to achieve both passive mechanical compliance and precise active force regulation, even during motion. The end-effector demonstrates an effective force control bandwidth of 100 Hz and can apply forces ranging from 2.5N to 15N. To validate the end-effector's performance, we developed a novel ex vivo actuating platform, enabling compliance testing of the end-effector on simulated abdominal breathing and sudden patient movements. Experiments demonstrate that the end-effector can maintain consistent probe contact during simulated respiratory motion at 2.5N, 5N, 10N, and 15N, with an average force tracking RMS error of 0.83N compared to 4.70N on a UR3e robot arm using conventional force control. This system represents the first compliant ultrasound end-effector tested on a tissue platform simulating dynamic movement. The proposed solution provides a novel approach for designing and evaluating compliant robotic ultrasound systems, advancing the path for more compliant and patient-friendly robotic ultrasound systems in clinical settings.