We address the task of detecting foiled image captions, i.e. identifying whether a caption contains a word that has been deliberately replaced by a semantically similar word, thus rendering it inaccurate with respect to the image being described. Solving this problem should in principle require a fine-grained understanding of images to detect linguistically valid perturbations in captions. In such contexts, encoding sufficiently descriptive image information becomes a key challenge. In this paper, we demonstrate that it is possible to solve this task using simple, interpretable yet powerful representations based on explicit object information. Our models achieve state-of-the-art performance on a standard dataset, with scores exceeding those achieved by humans on the task. We also measure the upper-bound performance of our models using gold standard annotations. Our analysis reveals that the simpler model performs well even without image information, suggesting that the dataset contains strong linguistic bias.