https://github.com/toannguyen1904/DeWi.
Accurate insect pest recognition plays a critical role in agriculture. It is a challenging problem due to the intricate characteristics of insects. In this paper, we present DeWi, novel learning assistance for insect pest classification. With a one-stage and alternating training strategy, DeWi simultaneously improves several Convolutional Neural Networks in two perspectives: discrimination (by optimizing a triplet margin loss in a supervised training manner) and generalization (via data augmentation). From that, DeWi can learn discriminative and in-depth features of insect pests (deep) yet still generalize well to a large number of insect categories (wide). Experimental results show that DeWi achieves the highest performances on two insect pest classification benchmarks (76.44\% accuracy on the IP102 dataset and 99.79\% accuracy on the D0 dataset, respectively). In addition, extensive evaluations and ablation studies are conducted to thoroughly investigate our DeWi and demonstrate its superiority. Our source code is available at