Recent advancements in remote heart rate measurement (rPPG), motivated by data-driven approaches, have significantly improved accuracy. However, certain challenges, such as video compression, still remain: recovering the rPPG signal from highly compressed videos is particularly complex. Although several studies have highlighted the difficulties and impact of video compression for this, effective solutions remain limited. In this paper, we present a novel approach to address the impact of video compression on rPPG estimation, which leverages a pulse-signal magnification transformation to adapt compressed videos to an uncompressed data domain in which the rPPG signal is magnified. We validate the effectiveness of our model by exhaustive evaluations on two publicly available datasets, UCLA-rPPG and UBFC-rPPG, employing both intra- and cross-database performance at several compression rates. Additionally, we assess the robustness of our approach on two additional highly compressed and widely-used datasets, MAHNOB-HCI and COHFACE, which reveal outstanding heart rate estimation results.