Video-Text Retrieval (VTR) aims to search for the most relevant video related to the semantics in a given sentence, and vice versa. In general, this retrieval task is composed of four successive steps: video and textual feature representation extraction, feature embedding and matching, and objective functions. In the last, a list of samples retrieved from the dataset is ranked based on their matching similarities to the query. In recent years, significant and flourishing progress has been achieved by deep learning techniques, however, VTR is still a challenging task due to the problems like how to learn an efficient spatial-temporal video feature and how to narrow the cross-modal gap. In this survey, we review and summarize over 100 research papers related to VTR, demonstrate state-of-the-art performance on several commonly benchmarked datasets, and discuss potential challenges and directions, with the expectation to provide some insights for researchers in the field of video-text retrieval.