American football games attract significant worldwide attention every year. Game analysis systems generate crucial information that can help analyze the games by providing fans and coaches with a convenient means to track and evaluate player performance. Identifying participating players in each play is also important for the video indexing of player participation per play. Processing football game video presents challenges such as crowded setting, distorted objects, and imbalanced data for identifying players, especially jersey numbers. In this work, we propose a deep learning-based football video analysis system to automatically track players and index their participation per play. It is a multi-stage network design to highlight area of interest and identify jersey number information with high accuracy. First, we utilize an object detection network, a detection transformer, to tackle the player detection problem in crowded context. Second, we identify players using jersey number recognition with a secondary convolutional neural network, then synchronize it with a game clock subsystem. Finally, the system outputs a complete log in a database for play indexing. We demonstrate the effectiveness and reliability of player identification and the logging system by analyzing the qualitative and quantitative results on football videos. The proposed system shows great potential for implementation in and analysis of football broadcast video.