We present a novel model designed for resource-efficient multichannel speech enhancement in the time domain, with a focus on low latency, lightweight, and low computational requirements. The proposed model incorporates explicit spatial and temporal processing within deep neural network (DNN) layers. Inspired by frequency-dependent multichannel filtering, our spatial filtering process applies multiple trainable filters to each hidden unit across the spatial dimension, resulting in a multichannel output. The temporal processing is applied over a single-channel output stream from the spatial processing using a Long Short-Term Memory (LSTM) network. The output from the temporal processing stage is then further integrated into the spatial dimension through elementwise multiplication. This explicit separation of spatial and temporal processing results in a resource-efficient network design. Empirical findings from our experiments show that our proposed model significantly outperforms robust baseline models while demanding far fewer parameters and computations, while achieving an ultra-low algorithmic latency of just 2 milliseconds.