Hattrick is a free web-based probabilistic football manager game with over 200,000 users competing for titles at national and international levels. Launched in Sweden in 1997 as part of an MSc project, the game's slow-paced design has fostered a loyal community, with many users remaining active for decades. Hattrick's game-engine mechanics are partially hidden, and users have attempted to decode them with incremental success over the years. Rule-based, statistical and machine learning models have been developed to aid this effort and are widely used by the community. However, these models or tools have not been formally described or evaluated in the scientific literature. This study is the first to explore Hattrick using structure learning techniques and Bayesian networks, integrating both data and domain knowledge to develop models capable of explaining and simulating the game engine. We present a comprehensive analysis assessing the effectiveness of structure learning algorithms in relation to knowledge-based structures, and show that while structure learning may achieve a higher overall network fit, it does not result in more accurate predictions for selected variables of interest, when compared to knowledge-based networks that produce a lower overall network fit. Additionally, we introduce and publicly share a fully specified Bayesian network model that matches the performance of top models used by the Hattrick community. We further demonstrate how analysis extends beyond prediction by providing a visual representation of conditional dependencies, and using the best performing Bayesian network model for in-game decision-making. To support future research, we make all data, graphical structures, and models publicly available online.