Understanding the decisions of tree-based ensembles and their relationships is pivotal for machine learning model interpretation. Recent attempts to mitigate the human-in-the-loop interpretation challenge have explored the extraction of the decision structure underlying the model taking advantage of graph simplification and path emphasis. However, while these efforts enhance the visualisation experience, they may either result in a visually complex representation or compromise the interpretability of the original ensemble model. In addressing this challenge, especially in complex scenarios, we introduce the Decision Predicate Graph (DPG) as a model-agnostic tool to provide a global interpretation of the model. DPG is a graph structure that captures the tree-based ensemble model and learned dataset details, preserving the relations among features, logical decisions, and predictions towards emphasising insightful points. Leveraging well-known graph theory concepts, such as the notions of centrality and community, DPG offers additional quantitative insights into the model, complementing visualisation techniques, expanding the problem space descriptions, and offering diverse possibilities for extensions. Empirical experiments demonstrate the potential of DPG in addressing traditional benchmarks and complex classification scenarios.