Federated Learning (FL) enables collaborative model training among medical centers without sharing private data. However, traditional FL risks on server failures and suboptimal performance on local data due to the nature of centralized model aggregation. To address these issues, we present Gossip Mutual Learning (GML), a decentralized framework that uses Gossip Protocol for direct peer-to-peer communication. In addition, GML encourages each site to optimize its local model through mutual learning to account for data variations among different sites. For the task of tumor segmentation using 146 cases from four clinical sites in BraTS 2021 dataset, we demonstrated GML outperformed local models and achieved similar performance as FedAvg with only 25% communication overhead.