This paper tackles temporal resolution of documents, such as determining when a document is about or when it was written, based only on its text. We apply techniques from information retrieval that predict dates via language models over a discretized timeline. Unlike most previous works, we rely {\it solely} on temporal cues implicit in the text. We consider both document-likelihood and divergence based techniques and several smoothing methods for both of them. Our best model predicts the mid-point of individuals' lives with a median of 22 and mean error of 36 years for Wikipedia biographies from 3800 B.C. to the present day. We also show that this approach works well when training on such biographies and predicting dates both for non-biographical Wikipedia pages about specific years (500 B.C. to 2010 A.D.) and for publication dates of short stories (1798 to 2008). Together, our work shows that, even in absence of temporal extraction resources, it is possible to achieve remarkable temporal locality across a diverse set of texts.