https://github.com/VILA-Lab/SRe2L/tree/main/CDA.
Dataset distillation aims to generate a smaller but representative subset from a large dataset, which allows a model to be trained efficiently, meanwhile evaluating on the original testing data distribution to achieve decent performance. Many prior works have aimed to align with diverse aspects of the original datasets, such as matching the training weight trajectories, gradient, feature/BatchNorm distributions, etc. In this work, we show how to distill various large-scale datasets such as full ImageNet-1K/21K under a conventional input resolution of 224$\times$224 to achieve the best accuracy over all previous approaches, including SRe$^2$L, TESLA and MTT. To achieve this, we introduce a simple yet effective ${\bf C}$urriculum ${\bf D}$ata ${\bf A}$ugmentation ($\texttt{CDA}$) during data synthesis that obtains the accuracy on large-scale ImageNet-1K and 21K with 63.2% under IPC (Images Per Class) 50 and 36.1% under IPC 20, respectively. Finally, we show that, by integrating all our enhancements together, the proposed model beats the current state-of-the-art by more than 4% Top-1 accuracy on ImageNet-1K/21K and for the first time, reduces the gap to its full-data training counterpart to less than absolute 15%. Moreover, this work represents the inaugural success in dataset distillation on larger-scale ImageNet-21K under the standard 224$\times$224 resolution. Our code and distilled ImageNet-21K dataset of 20 IPC, 2K recovery budget are available at