Efficient training of deep neural networks is an increasingly important problem in the era of sophisticated architectures and large-scale datasets. This paper proposes a training set synthesis technique, called Dataset Condensation, that learns to produce a small set of informative samples for training deep neural networks from scratch in a small fraction of the required computational cost on the original data while achieving comparable results. We rigorously evaluate its performance in several computer vision benchmarks and show that it significantly outperforms the state-of-the-art methods. Finally we show promising applications of our method in continual learning and domain adaptation.