We present a novel approach for fast and reliable policy selection for navigation in partial maps. Leveraging the recent learning-augmented model-based Learning over Subgoals Planning (LSP) abstraction to plan, our robot reuses data collected during navigation to evaluate how well other alternative policies could have performed via a procedure we call offline alt-policy replay. Costs from offline alt-policy replay constrain policy selection among the LSP-based policies during deployment, allowing for improvements in convergence speed, cumulative regret and average navigation cost. With only limited prior knowledge about the nature of unseen environments, we achieve at least 67% and as much as 96% improvements on cumulative regret over the baseline bandit approach in our experiments in simulated maze and office-like environments.