In pro-drop language like Arabic, Chinese, Italian, Japanese, Spanish, and many others, unrealized (null) arguments in certain syntactic positions can refer to a previously introduced entity, and are thus called anaphoric zero pronouns. The existing resources for studying anaphoric zero pronoun interpretation are however still limited. In this paper, we use five data augmentation methods to generate and detect anaphoric zero pronouns automatically. We use the augmented data as additional training materials for two anaphoric zero pronoun systems for Arabic. Our experimental results show that data augmentation improves the performance of the two systems, surpassing the state-of-the-art results.