Can deep learning models achieve greater generalization if their training is guided by reference to human perceptual abilities? And how can we implement this in a practical manner? This paper proposes a first-ever training strategy to ConveY Brain Oversight to Raise Generalization (CYBORG). This new training approach incorporates human-annotated saliency maps into a CYBORG loss function that guides the model towards learning features from image regions that humans find salient when solving a given visual task. The Class Activation Mapping (CAM) mechanism is used to probe the model's current saliency in each training batch, juxtapose model saliency with human saliency, and penalize the model for large differences. Results on the task of synthetic face detection show that the CYBORG loss leads to significant improvement in performance on unseen samples consisting of face images generated from six Generative Adversarial Networks (GANs) across multiple classification network architectures. We also show that scaling to even seven times as much training data with standard loss cannot beat the accuracy of CYBORG loss. As a side effect, we observed that the addition of explicit region annotation to the task of synthetic face detection increased human classification performance. This work opens a new area of research on how to incorporate human visual saliency into loss functions. All data, code and pre-trained models used in this work are offered with this paper.