We propose a curiosity reward based on information theory principles and consistent with the animal instinct to maintain certain critical parameters within a bounded range. Our experimental validation shows the added value of the additional homeostatic drive to enhance the overall information gain of a reinforcement learning agent interacting with a complex environment using continuous actions. Our method builds upon two ideas: i) To take advantage of a new Bellman-like equation of information gain and ii) to simplify the computation of the local rewards by avoiding the approximation of complex distributions over continuous states and actions.