Currently, image-denoising methods based on deep learning cannot adequately reconcile contextual semantic information and spatial details. To take these information optimizations into consideration, in this paper, we propose a Context-Space Progressive Collaborative Network (CS-PCN) for image denoising. CS-PCN is a multi-stage hierarchical architecture composed of a context mining siamese sub-network (CM2S) and a space synthesis sub-network (3S). CM2S aims at extracting rich multi-scale contextual information by sequentially connecting multi-layer feature processors (MLFP) for semantic information pre-processing, attention encoder-decoders (AED) for multi-scale information, and multi-conv attention controllers (MCAC) for supervised feature fusion. 3S parallels MLFP and a single-scale cascading block to learn image details, which not only maintains the contextual information but also emphasizes the complementary spatial ones. Experimental results show that CS-PCN achieves significant performance improvement in synthetic and real-world noise removal.