Collaborative robots could transform several industries, such as manufacturing and healthcare, but they present a significant challenge to verification. The complex nature of their working environment necessitates testing in realistic detail under a broad range of circumstances. We propose the use of Coverage-Driven Verification (CDV) to meet this challenge. By automating the simulation-based testing process as far as possible, CDV provides an efficient route to coverage closure. We discuss the need, practical considerations, and potential benefits of transferring this approach from microelectronic design verification to the field of human-robot interaction. We demonstrate the validity and feasibility of the proposed approach by constructing a custom CDV testbench and applying it to the verification of an object handover task.