Requiring statistical significance at multiple interim analyses to declare a statistically significant result for an AB test allows less stringent requirements for significance at each interim analysis. Repeated repeated significance competes well with methods built on assumptions about the test -- assumptions that may be impossible to evaluate a priori and may require extra data to evaluate empirically. Instead, requiring repeated significance allows the data itself to prove directly that the required results are not due to chance alone. We explain how to apply tests with repeated significance to continuously monitor unbounded tests -- tests that do not have an a priori bound on running time or number of observations. We show that it is impossible to maintain a constant requirement for significance for unbounded tests, but that we can come arbitrarily close to that goal.