Current machine learning paradigm relies on continuous representations like neural networks, which iteratively adjust parameters to approximate outcomes rather than directly learning the structure of problem. This spreads information across the network, causing issues like information loss and incomprehensibility Building on prior work in environment dynamics modeling, we propose a method that learns visual space in a structured, continual manner. Our approach refines networks to capture the core structure of objects while representing significant subvariants in structure efficiently. We demonstrate this with 2D shape detection, showing incremental learning on MNIST without overwriting knowledge and creating compact, comprehensible representations. These results offer a promising step toward a transparent, continually learning alternative to traditional neural networks for visual processing.