Jewellery item retrieval is regularly used to find what people want on online marketplaces using a sample query reference image. Considering recent developments, due to the simultaneous nature of various jewelry items, various jewelry goods' occlusion in images or visual streams, as well as shape deformation, content-based jewellery item retrieval (CBJIR) still has limitations whenever it pertains to visual searching in the actual world. This article proposed a content-based jewellery item retrieval method using the local region-based histograms in HSV color space. Using five local regions, our novel jewellery classification module extracts the specific feature vectors from the query image. The jewellery classification module is also applied to the jewellery database to extract feature vectors. Finally, the similarity score is matched between the database and query features vectors to retrieve the jewellery items from the database. The proposed method performance is tested on publicly available jewellery item retrieval datasets, i.e. ringFIR and Fashion Product Images dataset. The experimental results demonstrate the dominance of the proposed method over the baseline methods for retrieving desired jewellery products.