Bayesian optimization (BO) is increasingly employed in critical applications to find the optimal design with minimal cost. While BO is known for its sample efficiency, relying solely on costly high-fidelity data can still result in high costs. This is especially the case in constrained search spaces where BO must not only optimize but also ensure feasibility. A related issue in the BO literature is the lack of a systematic stopping criterion. To solve these challenges, we develop a constrained cost-aware multi-fidelity BO (CMFBO) framework whose goal is to minimize overall sampling costs by utilizing inexpensive low-fidelity sources while ensuring feasibility. In our case, the constraints can change across the data sources and may be even black-box functions. We also introduce a systematic stopping criterion that addresses the long-lasting issue associated with BO's convergence assessment. Our framework is publicly available on GitHub through the GP+ Python package and herein we validate it's efficacy on multiple benchmark problems.