This paper investigates the role of tutor feedback in language learning using computational models. We compare two dominant paradigms in language learning: interactive learning and cross-situational learning - which differ primarily in the role of social feedback such as gaze or pointing. We analyze the relationship between these two paradigms and propose a new mixed paradigm that combines the two paradigms and allows to test algorithms in experiments that combine no feedback and social feedback. To deal with mixed feedback experiments, we develop new algorithms and show how they perform with respect to traditional knn and prototype approaches.